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Eigenvalue Analysis of Rectangular Mindlin Plates by Chebyshev 
Pseudospectral Method 

J i n h e e  Lee* 
Department of Mechano- Informatics, Hongik University, 
Chochiwon, Yeonki-kun, Choongnam 339-701, Korea 

A study of  free vibration of  rectangular Mindlin plates is presented. The analysis is based on 
the Chebyshev pseudospectral method, which uses test functions that satisfy the boundary 
conditions as basis functions. The result shows that rapid convergence and accuracy as well as 
the conceptual simplicity are achieved when the pseudospectral method is applied to the solution 
of  eigenvalue problems. Numerical examples of  rectangular Mindlin plates with clamped and 
simply supported boundary conditions are provided for various aspect ratios and thickness-to- 
length ratios. 
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Nomenclature 
akt, bhhCkt : Expansion coefficients 
Ak,Bk,Ck,FI, U:,V~ : One-dimensional basis func- 

tions 
D : Fiexural rigidity 
E : Modulus of  elasticity 
G : Shear modulus 
h : Thickness of  the plate 
Mx, Ms,M~,Qx, Qy : Stress resultants 
Tn : Chebyshev polynomials of  the 

first kind 
w, W : Transverse displacement 
X : Size of  the rectangle in x-di-  

rection 

Size of  the rectangle in y-di -  
rection 
Shear correction factor 
Nondimensionalized frequency 
parameter 
Poisson's ratio 
Density of  the plate 

Y 

1/ 

P 
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~x,~ 

¢ , ,~  

Subscripts 

n 
8 

: Bending rotation normal to the 
midplane in x-direction 
Bending rotation normal to the 
midplane in y-direction 

• Natural frequency in [radian/ 
sec] 

: Normal to the boundary 

: Tangential to the boundary 

1. Introduction 

Plate vibration is important in many applica- 
tions in mechanical, civil and aerospace engi- 
neering. Real plates may have appreciable thick- 
ness in which case the transverse shear and the 
rotary inertia are not negligible as assumed in the 
classical plate theory. As a result the thick plate 
model based on the Mindlin theory has gained 
more popularity. In recent years, the eigenvalue 
analyses of  plates based on the Mindlin theory 
have been extensively investigated and new me- 
thods have been proposed. 

Research on the Mindlin plate vibration can be 
divided into three categories. First, there exist 
exact solutions for a very restricted number of  
simple cases (Srinivas and Rao, 1970). Second, 
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semi-analytic solutions are available. These cases 
include the Rayleigh-Ritz method (Dawe and 
Roufaeil, 1980 ; Chakraverty et al., 1999) and the 
differential quadrature method (Bert and Malik, 
1996 ; Liew and Teo, 1999). Finally, there are the 
most widely used discretization methods such as 
the finite element method, the finite strip method 
and the finite difference method as can be found 
in the following survey articles (Leissa, 1981; 
Leissa, 1986; Liew et al., 1995). 

As it is more useful to have analytical results 
than to resort to a numerical method, most efforts 
focus on developing efficient semi-analytic solu- 
tions. The pseudospectral method can be consi- 
dered as a spectral method that performs a collo- 
cation process. As the formulation is simple and 
powerful enough to produce approximate solu- 
tions that are close to exact solutions, this method 
has been used extensively in fluid mechanics re- 
search (Pyret and Taylor, 1990). The pseudospec- 
tral method can be made as spatially accurate as 
desired through exponential rate of  convergence 
with mesh refinement. It also permits the choice of  
a wide variety of  functions for the expansion. 
Since the basis functions can be differentiated 
analytically and since each spectral coefficient is 
determined by all the grid point values the pseu- 
dospectral rules are N-po in t  formulas, and one 
would need an N - t h  order finite difference or 
finite element method with an error of  O(h N) to 
equal the accuracy of  the pseudospectral proce- 
dure with Ncol locat ion points (Boyd, 1989). 

Even though this method could be used for the 
solution of  structural mechanics problems, it has 
been largely unnoticed by the structural mec- 
hanics community and few articles are available 
where the pseudospectral method has been ap- 
plied. For instance spectral element method was 
applied to the vibration analysis of  plates subject 
to dynamic loads (Lee and Lee, 1998). Che- 
byshev collocation method was applied to the free 
vibration analyses of  axisymmetric circular plates 
(Soni and Amba-Rao,  1975) and axisymmetric 
annular plates (Gupta and Lal, 1985), where 
fourth order differential equations in terms of  1~ 
were formed by eliminating w. The boundary 
conditions that does not contain the eigenvalue 

were combined with the governing equations to 
form the characteristic equations from which the 
eigenvalues were calculated. The collocation me- 
thod along with the power series representation of  
the dependent variables was also used in the free 
vibration analysis of  the Mindlin plates (Mikami 
and Yoshimura, 1984). Recently, the pseudospec- 
tral method was used in an eigenvalue problem of 
circular Mindlin plates (Lee, 2002). 

in the present work, the pseudospectral method 
is applied to the free vibration analysis of  rec- 
tangular plates based on the Mindlin theory. 

2. P s e u d o s p e c t r a l  F o r m u l a t i o n s  

The equations of  motion of  homogeneous, 
isotropic plates based on the Mindlin theory are 

OM~ ÷ OM~ ^ ~h 3 ~ ' x  
Ox Oy - ~ =  12 at z 

OMxy, aMy ^ ph 3 02~ 
Ox ~ O-y - - ~ z ' =  12 at 2 (l) 

OQ= + OO_~=oh O2w 
ax at 2 

Mx, My, M~, Qx and Qy are defined by 

M. D ( OCrx +v O~ ~ 
= ~-~  -~-/ 

M , = D ( v  O~':, + O~ ~ 
Ox O y /  

2 ~, Oy Ox ] (2) 

Q~=BGh ( OW ~'x+-~-)  

Qx=BGh ( OW ~'+W) 
where D=E, h3/12(I-~). The substitution of 
Eq. (2) into Eq. (1) assuming a harmonic motion 
in time 

~x(x, y, t)=lhx(x, y)s in  wt 
~ ( x ,  y, t) = ¢ y ( x ,  y)sino~t (3) 
W(x, y, t) = w (x, y) sin a~t 

yields 

[ .i, . O w  ~ . . . .  ~ p h  3 j .  BCh k ~'=" Ox ] -  " ~ - 2 - f ' =  
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D (  i - v  ~lk,. ~ 'Y  -I" I + P  ~lkx 
Ox ~ ¢- ay" 2 axay X l 

(4) 
/ ,,, ~ Ow ~ . . . .  ~ ah~.,, 

~ ~ G  h 

BGh ~ ~ - - ~ - - - T f f  - ~-y~ ] = - a ? p h w  

When the center of  the rectangular plate is 
placed at the origin and the edges are aligned 
parallel to the Cartesian coordinate axes, it is 
convenient to normalize the spatial independent 
variables as follows 

2 x  
S = ~ - ~  [--1,  l] 

(5) 
~=3-~-e[--I, l] 

and Eq. (4) is rewritten as 

( 2 0~l~x | I - -V ~Ikx + l + v  o~Iky) 
2D - - ~  aS s y2 &lz X Y  OS&i 

- BGh ( 2 Ow 

2 D (  l - v  °~Ik" b--~--~20~lkyq, l + v '  o~#x ) 
X 2 0S 2 X Y  OSO~ 

(6) 
2 Ow 

= -  

~ - - 7 ~ - ~ - -  x ~ oS' +--~- a,~ - - ~  
= - o ] p w  

l~x, ~'y and w are represented by the same trunca- 
tion, and the eigenfunction expansions are given 
by 

K L 
¢~(S, ~ ) = ~  a,,a~(S) u,(~) 

g L 

lhy(S, r/)=k~__~=~ b,~B,(S) V~(r/) (7) 

x L 

w ( S, TI ) ---- k~_~= , 7~ c J,, C J, ( S ) F, ( ~l ) 

Clamped boundary conditions (C) 

~.=o, ¢,8=o, w=O (8) 

and simply supported boundary condition (SS) 

M.=O, ~,=0, w=O (9) 

are considered in this study. 
Complex eigenvalues and spurious roots gener- 

ally occur when the standard set of  Chebyshev 

polynomials is used as basis functions and the 
boundary conditions that did not contain eigen- 
values are included as side constraints to match 
the number of  unknowns. In order to overcome 
this difficulty, test functions that satisfy the boun- 
dary conditions are used as basis functions and 
the collocation is performed at the internal points 
only. 

#, and w vanish at S = _ 1  for the cases in 
which the boundary conditions of  the two op- 
posing edges which are parallel to the y-axis  are 
given as either clamped-clamped (C-C) ,  or sim- 
ply supported-simply supported (SS-SS) or cl- 
amped at S = -  1, and simply supported at S = 1 
(C-SS).  The basis functions 

B~p-,(S) =G~- , (S )  = ~p(S)  - To(S) 
B~p (S) = C.p (S) = T~.x (S) - T~ (S) 

(p=l ,  2, ...) 
(10) 

satisfy lky=0 and w = 0  at S=---+I. The basis 
function Ak(S) ,  however, is required to satisfy 
either #x=0  or M x = 0  at the ends, and is assumed 
to be 

A~p_~ ( $) = T~p ( ~) - To(S) + d~¢2 + d2$ 
A~p ( $) = T~p+t ( $) - 7"1($) + d3$~ + d ,$  

(p=  I, 2, ..-) 
(ll) 

The coefficients dl, d2, d3 and d4 in Eq. (1 I) that 
satisfy each of C-C,  SS-SS and C-SS boundary 
conditions are calculated as given in Appendix 
and are listed in Table 1. 

Similar situations occur when the boundary 
conditions of  the two opposing edges parallel to 
the x-axis  are given as one of C-C,  SS-SS and 
C-SS types. The basis functions 

Uzq-,(~i) --F2q--, (~/) = Tz, (~) -- To (~/) 
U2q(~)=Fz , (~ )= T2q+,(~) - T,(~) (12) 

(q---- 1, 2, -..) 

Table I Coefficients of the correction term in Ah 

dt d2 d3 d, 
C-C 0 0 0 0 

SS-SS -2/~ 0 0 --4p(p+ I) 
C-SS --4ff/3 --4pZ/3 - -4p(p+l) /3  --4p(p+l)/3 



Eigenvalue Analysis o f  Rectangular Mindlin Plates by Chebyshev Pseudospectral Method 373 

T a b l e  2 Coefficients of the correction term in Vt 

el  e~ e~ e~ 

C-C 0 0 0 0 
SS-SS - 2 q  ~ 0 0 --4q(q+l)  
C-SS --4q~/3 --4q~/3 --4q (q + I)/3 --4q(q+ !)/3 

guarantee that lkx and w vanish at r / = ± l .  As in 
Eq. (11), the basis function Vt (r/) is assumed to 
be 

V2q_~(~) = Tzq (rD - To(rD + e :~+  ez~ 
½,(~/) = T2q+~(r/) - Tt (7/) + e : /a+  e,r/ (13) 

( q = l ,  2, ...) 

and the coefficients el, ca, es and e4 that satisfy 
each of  C-C,  SS-SS and C-SS boundary condi- 
tions are listed in Table 2. 

Substituting Eq. (7) into Eq. (6) and setting 
the residuals equal to zero at the Gauss-Cheby- 
shev collocation points (~ei, r/~), where ~el and r/~ 
are given by 

f f (2 i - - l )  
8, = -- cos 2 K  (i = 1, 2, .-., K)  

/r (2j- -  1) (14) 
~/~=--COS 2L ( j =  i, 2, " ' ,  L) 

yields 

/" 2 # 
~,~ [a~ {~A~(*,)U,(~,)+~L&(~,)U;'(,,)-2GLD h A,(~,t U,(,~)} 

! t I+v , 

_ a l?  x t  

g°t/./ /t=ll=l 

2 I ' l  . ! # .  l 
where ' and * denote the differentiation with 
respect to ~e and r/, respectively. 

The pseudospectral algebraic system of the 
standard matrix form 

[H]{f  }=o?[Z]{ f } (16) 

is formed from Eq. (15), where the eigenvector 
{ f } contains the expansion coefficients 

{f }={ a,,, an, "", art, bu, b~, '", b~, ct,, cn, "", c~ } r (17) 

where T stands for the transpose. The algebraic 
problem Eq. (15) is solved for the eigenvalues 
using the Eispack RGG subroutine. 

3. N u m e r i c a l  E x a m p l e s  

A preliminary test is run to check the conver- 
gence of  the pseudospectral method applied to the 
eigenvalue problem of a Mindlin plate. The 
eigenvalues of  a square plate with thickness-to- 
length ratio h /X- -0 .01  are computed for differ- 
ent K x L ,  and the computed results are listed in 
Table 3 where the eigenvalues based on the clas- 
sical theory (Blevins, 1979) are also given for 
comparison. The results show rapid convergence 
of  the pseudospectral method in which the con- 
vergence of  the lowest 13 eigenvalues to 5 signifi- 
cant digits is achieved with K x L - - 1 2 X  12, and 
the lowest 20 eigenvalues with K X L = 1 5 × 1 5 .  

Poisson's ratio v and shear correction factor /~ 
are 0.3 and 5/6, respectively, throughout the pa- 
per and the numbers given in Tables 3 ~ 9  are 
nondimensionalized frequency parameter /l~j de- 
fined by 

x ~ 
A~ =COi., - -  (18) , / ~ / p h  

The eigenvalues are computed with K x L =  
15 x15 for various aspect ratios Y / X  and thick- 
ness-to-length ratios, where the C - C - C - C ,  SS- 
SS-SS-SS, SS-C-SS-C (simply supported at 
~ ' = ± 1 ) ,  C-SS-SS-C (simply supported at ~e=l 
and ~/=1), C - S S - C - C  (simply supported at ~/= 
1) and SS-SS-SS-C (clamped at T/=-- I )  boun- 
dary conditions are applied. Nondimensionalized 
frequency parameters of  the 9 lowest eigenvalues 
for each boundary condition are listed in Tables 
4~9 ,  where the numbers in the parentheses rep- 
resent respective vibration modes. 

Tables 4 ~ 9  show that the computed eigen- 
values are in good agreement with those of  the 
classical theory when h / X  is very small, but they 
deviate considerably as h / X  becomes larger. In 
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s o m e  cases  it is o b s e r v e d  tha t  t he  o r d e r  o f  ap -  

p e a r a n c e  o f  t he  v i b r a t i o n  m o d e s  c h a n g e s  as  h / X  

b e c o m e s  larger .  F o r  e x a m p l e ,  t he  v i b r a t i o n  m o d e s  

tha t  c o r r e s p o n d  to  t he  f i f th  a n d  s ix th  e i g e n v a l u e s  

w i th  Y / X = 0 . 4  a n d  h/X~O.02 fo r  t he  C - C - C -  

C b o u n d a r y  c o n d i t i o n  in T a b l e  5 a re  (51) a n d  

(12) ,  w h i c h  t u r n  o u t  to  be  (12) a n d  (51) w i th  h~ 
X = 0 . 0 5 .  

Table  3 Convergence  test o f  the pseudospectral  method  appl ied to the free vibrat ion o f  square plates, 
nondimens iona l ized  frequency parameter  ,]~ ( S S - S S - S S - S S  boundary  condi t ion ,  /~----5/6, v----0.3, 
M X = 0 . 0 1 )  

K x L Classical 
mode  

3 × 3  4 × 4  5 × 5  6 × 6  8 × 8  1 0 X l 0  1 2 x 1 2  15×15 18X18 theory 

1 19.965 20.217 19.729 19.731 19.732 19.732 19.732 19.732 19.732 19.74 

2 - -  52.020 53.445 49.284 49.304 49.303 49.303 49.303 49.303 49.35 

3 - -  52.020 53.445 49.284 49.304 49.303 49.303 49.303 49.303 49.35 

4 - -  81.322 85.029 78.775 78.843 78.842 78.842 78.841 78.842 78.96 

5 - -  - -  111.75 118.08 98.950 98.529 98.517 98.517 98.517 98.70 

6 - -  - -  111.75 118.08 98.950 98.529 98.517 98.517 98.517 98.70 
7 - -  - -  140.14 145.12 128.38 128.01 128.00 128.00 128.00 128.3 
8 - -  - -  140.14 145.12 128.38 128.01 128.00 128.00 128.00 128.3 

9 - -  - -  189.97 205.73 168.54 167.33 167.27 167.27 167.27 167.8 

10 --  - -  - -  208.39 168.54 167.33 167.27 167.27 167.27 167.8 

Ii  - -  - -  - -  208.39 177.70 177.09 177.07 177.07 177.07 177.7 

12 --  - -  - -  232.37 197.53 196.72 196.68 196.68 196.68 197.4 

13 --  --  - -  232.37 197.53 196.72 196.68 196.68 196.68 197.4 

14 --  - -  - -  286.18 246.24 245.66 245.62 245.63 245.63 246.7 

15 --  - -  - -  286.18 246.24 245.66 245.62 245.63 245.63 246.7 

16 - -  - -  - -  358.24 313.76 264.89 255.92 255.41 255.41 256.6 
17 . . . .  389.47 264.89 255.92 255.41 255.41 256.6 

18 . . . .  389.47 293.77 285.21 284.72 284.72 286.2 

19 . . . .  413.72 293.77 285.21 284.72 284.72 286.2 
20 . . . .  413.72 314.02 314.00 314.00 314.00 315.8 

Table  4 Nondimens iona l ized  frequency parameter  A~ o f  rectangular  plates ( S S - S S - S S - S S  boundary  condi  

-ion, B----5/6, v----0.3, K × L - - - - 1 5 × I 5 )  

Y / X  h / X  I 2 3 4 5 6 7 8 9 

2/5 

( l l )  (21) (31) (41) (12) (22) (51) (32) (42) 

0.005 71.531 101.12 150.41 219.38 256.31 285.84 307.99 335.05 403.90 

0.01 71.460 100.98 150.10 218.72 255.41 284.72 306.69 333.51 401.67 

0.02 71.180 100.42 148.87 216.14 251.91 280.40 301.69 327.62 393.19 
0.05 69.329 96.811 141.22 200.75 231.49 255.56 273.31 294.69 347.58 

2/3  

(11) (21) (12) (31) (22) (32) (41) (13) (23) 
0.005 32.072 61.668 98.651 110.98 128.23 177.51 179.97 209.53 239.07 

0.01 32.057 61.615 98.517 110.81 128.00 177.07 179.53 208.92 238.29 
0.02 32.001 61.407 97.987 110.14 127.11 175.38 177.78 206.57 235.24 
0.05 31.614 60.017 94.545 105.83 121.44 164.96 167.09 192.42 217.24 

(11) (21) (12) (22) (31) (13) (32) (23) (14) 
0.01 19.732 49.303 49.303 78.841 98.517 98.517 128.00 128.00 167.27 
0.02 19.711 49.170 49.170 78.502 97.987 97.987 127.11 127.11 165.75 
0.05 19.562 48.270 48.270 76.260 94.545 94.545 121.44 121.44 156.38 
0.1 19.065 45.483 45.483 69.794 85.038 85.038 106.68 106.68 133.62 
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Table 5 Nondimensionalized frequency parameter ,~ of rectangular plates (C-C-C-C boundary condition 
, ~=5/6 ,  ~=0.3, K x L = I 5 X I 5 )  

Y / X  h / X  I 2 3 4 5 6 7 8 9 

2/5 

(11) (21) (31) (41) (51) (12) (22) (32) (61) 
0.005 147 .59  173.54 220.98  291.11 383 .40  393.17  419 .94  465 .85  497.29 
0.01 147.04 172.81 219 .88  289 .38  380.65 389 .94  416 .29  461.44 492.90 
0.02 1 4 4 . 9 0  169.98 215 .72  282 .89  370 .40  377.85  402.71 445 .25  476.86 
0 .05  1 3 2 . 3 9  154.02 193.13 249.02  317.33" 319.05"* 336.41 368 .83  400.48 

(12)* (51)** 

2/3 

(11) (21) (12) (31) (22) (41) (32) (13) (42) 
0.005 60.730 93 .766  148.62 149.52 179.33 226 .50  231 .67  281.41 305.58 
0.01 6 0 . 6 3 7  93 .567  148.15 149.07 178.66 225 .56  230 .60  279.91 303.83 
0 .02  60.274 92 .793  146.34 147.34  176.09 221 .93  226.55  274.17  297.25 
0 .05 5 7 . 9 4 9  88 .019  135.43 137.01 161.24  201 .30  204 .14  242.65  262.41 

( l l )  (21) (12) (22) (31) (13) (23) (32) (14) 
O.OI 3 5 . 9 4 2  73 .239  73 .239  107.89 131.13 131.13 164.30  164.30 209.46 
0.02 3 5 . 8 1 6  72 .783 72 .783  106.94  129.81 129.81 162.27 162.27 206.39 
0.05 3 4 . 9 8 2  69 .869  69 .869  101.13 121.73 121.73 150.30 150.30 188.52 
O.l 32.524 62 .039  62 .039  86 .949  102.43 102.43 123.89 123.89 150.92 

Table 6 Nondimensionalized frequency parameter ,]~ of rectangular plates (C-SS-SS-C boundary condition, 
•=5/6, v=0.3, K x L = I S X l 5 )  

Y / X  h / X  ! 2 3 4 5 6 7 8 9 

2/5 

( l l )  (21) (31) (41) (12) (51) (22) (32) (61) 
0.005 105.22 133.36 182.45 252.71 320.95  343 .69  349 .04  396 .64  455.08 
O.Ol 104.99 133.01 181.83 251.61 319 .12  341 .76  346 .90  393.91 451.82 
0.02 1 0 4 . 0 7  131.62 179.44 247 .39  312.16  334.45  338 .77  383 .67  439.65 
0 .05  9 8 . 3 6 6  123.22 165.56 223 .83  274.51 295 .26  296 .06  331 .30  378.19 

2/3 

(11) (21) (12) (31) (22) (41) (32) (13) (23) 
0.005 4 4 . 8 7 6  76 .507  122.23 129.30  152.39 202 .39  203.35  244 .08  273.76 
0.01 44.834 76 .396  121.96 129.01 151.98 201 .72  202 .65  243 .09  272.51 
0 .02  4 4 . 6 6 7  75 .960  120.91 127.88 150.38 199.13 199.93 239 .28  267.75 
0 .05  43.564 73 .168  114.35 120.91 140.70  183.73 184.21 217 .36  241.05 

(11) (21) (12) (22) (13) (31) (32) (23) (41) 
0 .01 2 7 . 0 3 4  60 .448  60 .697  92 .632  114.26 114.41 145.30  145.60  187.70 
0.02 2 6 . 9 7 3  60 .180  60 .433  92 .031 113.39 113.55 143.90 144.21 185.49 
0 .05  2 6 . 5 6 4  58 .428 58.705 88 .219  107.92 108.10  135.34 135.72 172.22 
0.1 25.283 53 .393 53.731 78 .176  93 .877 94.114 114.98 115.43 142.30 

4. Conclusions 

The pseudospectral method that employs the 

modified Chebyshev polynomials as basis func- 

tions is applied to the free vibration analysis of 

rectangular plates based on the Mindlin theory. 

The formulation as well as coding for computa- 

tion is fairly straightforward. The results of this 

study show good agreement with those of the 

classical plate theory when the thickness-to-leng- 

th ratio is small but quantitative differences in the 

natural frequencies exist for thicker plates. The 

example problem demonstrates a rapid conver- 
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Table 7 

Jinhee Lee 

Nondimensionalized frequency parameter/l~, of  rectangular plates (SS-C-SS-C boundary condition, 
~8=5/6, v=0.3,  K x L = I 5 X l S )  

Y / X  h / X  1 2 3 4 5 6 7 8 9 

2/5 

(11) (21) (31) (41) (51) (12) (22) (61) (32) 
0.005 145.30 164 .51  201.92 260.65 341.45 391.79 414.49 443.93 453.89 
0.01 144.77 163.84 201.01 259.32 339.42 388.59 410.95 440.77 449.76 
0.02 142.69 161.27 197.53 254.29 331.80 376.59 397.76 429.03 434.49 
0.05 130.42 146 .51  178.25 227.33 292.54 316.40 332.84 361.41" 371.02"* 

(32) * (61) ** 

2/3 

(11) (21) (31) (12) (22) (41) (32) (42) (51) 
0.005 56.321 78.938 123.08 146.12 169.92 188.93 212.53 275.57 275.62 
0.01 56.241 78.803 122 .81  145.67 169.33 188.38 211.69 274.27 274.51 
0.02 55.925 78.275 121.77 143.93 167.09 186 .21  208.46 269.32 270.22 
0.05 53.874 74.948 115.38 133.39 153.84 173 .41  190.05 241.44" 242.16"* 

(13)* (42)** 

(11) (21) (12) (22) (31) (13) (32) (23) (41) 
0.01 28.924 54.672 69.194 94.361 102.00 128.68 139.77 154.20 167.79 
0.02 28.844 54.462 68.801 93.703 101.38 127.45 138.49 152 .51  168.17 
0.05 28.311 53.087 66.254 89.555 97.412 119.84 130.72 142.34 158.24 
0.1 26.668 49.113 59.210 78.813 86.844 101.37 112.06 118.92 134.60 

3/2 

( l l )  (12) (21) (13) (22) (23) (31) (14) (32) 
0.01 17.365 35.311 45.387 61.959 62.226 88.625 94.045 97.202 109.84 
0.02 17.340 35.212 45.263 61.675 61.970 88.096 93.547 96.542 109.12 
0.05 17.172 34.549 44.430 59.815 60.293 84.716 90.324 92.328 104.59 
O.l 16.623 32.505 41.875 54.468 55.468 75.632 81.170 81.413 92.668 

(14)* (31)* 

5/2 

( l l )  (12) (13) (14) (21) (22) (23) (15) (24) 
O.Ol 12.132 18.357 27.947 40.712 41.346 46.957 56.114 56.604 68.650 
0.02 12.122 18.333 27.892 40.598 41.250 46.828 55.922 56.390 68.357 
0.05 12.057 18.170 27.519 39.835 40.600 45.960 54.653 54.974 66.447 
O.l 11.835 17.634 26.327 37.482 38.554 43.295 50.780* 50.874** 60.954 

(15)* (23)* 

Table 8 Nondimensionalized ~equency parameter A~ of rectangular plates (C-SS-C-C boundary condition, 
~ = 5 / 6 ,  v=O.3, K × L = 1 5 x  15) 

Y / X  h / X  1 2 3 4 5 6 7 8 9 

2/5 

(11) (21) (31) (41) (12) (22) (51) (32) (42) 
0.005 106.96 139.47 194 .01  269.88 321.82 352.40 366.38 403.80 476.09 
0.01 106.72 139.07 193.27 268.54 319.98 350.19 364.04 400.91 472.12 
0.02 105.76 137.50 190.44 263.45 312.96 341.82 355.23 390 .11  457.52 
0.05 99.844 128.17 174.27 235.61 275.07 297.88 309.45 335.54 386.82 

2/3 

( l l )  (21) (12) (31) (22) (32) (41) (13) (23) 
0.005 48.141 85.441 123.86 143.82 158 .11  214.24 222.28 245.14 277.76 
0.01 48.090 85.288 123.57 143.42 157.64 213.40 221.40 244.14 276.45 
0.02 47.886 84.691 122.48 141.88 155.84 210.19 217.99 240.27 271.44 
0.05 46.558 80.929 115.66 132.57 145 .11  191.87 198.36 218.08 243.68 
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Y / X  h / X  1 2 3 4 5 6 7 8 9 

(11) (12) (21) (22) (13) (31) (23) (32) (14) 
0.01 31.794 63.226 70.934 100.53 116.04 129.92 151.34 158.84 188.99 
0.02 31.698 62.918 70.516 99.747 115.13 128.66 149.74 157 .01  186.72 
0.05 31.060 60.923 67.822 94.896 109.39 120.87 1 4 0 . 1 1  146.05 173.18 
0.1 29.130 55.334 60.457 82.667 94.879 102.09 117.90 121.29 142.88 

3/2 

( l l )  (12) (13) (21) (22) (14) (23) (31) (24) 
0.01 

25.837 38.051 60.212 65.388 77.369 91.922 98.343 124.48 128.67 
0.02 

25.770 37.925 59.942 65.030 76.884 91.351 97.609 123.32 127.50 
0.05 

25.320 37.091 58.183 62.700 73.787 87.710 93.019 ll6.11 120.35 
0.1 

23.917 34.613 53.198 56.178 65.480 77.996 81.333 98.418 103.14 

5/2 

( l l )  (12) (13) (14) (15) (21) (22) (23) (16) 
O.Ol  23.420 26.992 33.751 44.056 57.918 62.852 66.799 73.614 75.248 
0.02 23.364 26.920 33.648 43.900 57.674 62.521 66.428 73.173 74.863 
0.05 22.987 26.437 32.968 42.876 56.083 60.349 64.016 70.337 72.384 
O.l 21.785 24.940 30.915 39.866 51.533 54.198 57.295 62.628 65.531 

Table 9 Nondimensionalized frequency parameter A~ of rectangular plates (SS-SS-SS-C boundary condition, 
~/, 5/6, v=0.3,  K x L = I S X l S )  

Y / X  h / X  1 2 3 4 5 6 7 8 9 

2/5 

(11) (21) (31) (41) (12) (51) (22) (32) (61) 
0.005 103.85 128.23 172.20 236.94 320.18 322.43 346.03 390.19 428.37 
0.01 103.62 127 .91  171.68 236.03 318.37 320.84 343.94 387.60 425.69 
0.02 102.74 126.65 169.64 232.53 311.46 314.81 336.02 377.83 415.58 
0.05 97.187 118.96 157.59 212.59 274.00 281.91 293.86 327.39 363.14 

2/3 

(11) (21) (31) (12) (22) (41) (32) (13) (42) 
0.005 42.516 68.975 116.20 120 .91  1 4 7 . 5 1  183.94 193.60 243.17 259.85 
O.Ol  42.479 68.893 115.99 120.65 147.14 183.44 193.00 242.19 258.82 
0.02 42.334 68.568 115.17 119.63 145.69 181.53 190.66 238.43 254.85 
0.05 41.367 66.459 110.04 113.27 136.84 169.95 176.80 216.73 232.24 

(11) (21) (12) (22) (31) (13) (32) (23) (41) 
0.01 23.632 51.619 58.566 85.974 100.08 112.95 133.43 140.42 168.42 
0.02 23.590 51.456 58.328 85.501 99.508 112.12 132.37 139.18 166.86 
0.05 23.306 50.370 56.755 82.451 95.844 106.86 125.78 131 .51  157.25 
0.1 22.389 47.104 52.150 74.105 85.876 93.227 109.26 112.74 134.08 

3/2 

( I I )  (12) (21) (13) (22) (23) (14) (31) (32) 
0.01 15.573 31.051 44.526 55.326 59.391 83.462 88.273 93.512 107.88 
0.02 15 .557  30.986 44.413 55.127 59.179 83.038 87.786 93.028 107.22 
0.05 15.445 30.546 43.648 53.809 57.776 80.287 84.622 89.882 103.00 
0.1 15.073 29.145 41.271 49.876 53.620 72.623 75.890 81.129 91.686 

5/2 

( I I )  (12) (13) (14) (21) (22) (15) (23) (24) 
0.01 11.748 17 .181  25.903 37.802 41.175 46.321 52.843 54.814 66.577 
0.02 11.739 17.163 25.861 37.714 41.081 46.199 52.673 54.640 66.318 
0.05 11.683 17.036 25.574 37.116 40.444 45.381 51.536 53.484 64.614 
O.I 11.490 16.612 24.639 35.232 38.430 42.844 48.092 49.989 59.620 



378 Jinhee Lee 

gence and accuracy as well as the conceptual sim- 
plicity of the pseudospectral method. It is observ- 
ed that the choice of the basis functions that 
satisfy the boundary conditions suppress spurious 
eigenvalues. Numerical examples of thick rectan- 
gular plates with clamped and simply supported 
boundary conditions are provided for various 
aspect ratios and thickness-to-radius ratios. 
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Appendix 

!. The simply supported-simply supported bo- 
undary condition (SS-SS) for the two opposing 
edges that are parallel to the y-axis is 

Mx=O, 1~,----0, w----0 at ~ = - - I  (AI) 
Mx=O, l~y=O, w=O at ~e= I 

l~y=0 and w = 0  at ~e_--+_ 1 are satisfied by the 
condition given in Eq. (10), and the remaining 
condition is 

/ 2  a ~ ,  2 a_b_\l 
Mx lef±l=D ~-~- a~ e -t-v--~- a~] }l,=±t (A2) 

2D Ol~x 
= - ~ - - ~ -  ,ffi±l=0 
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Using the relationship (7), it is worthwhile to 
note that 

d A ,  ,-±1 d$ =0  (k =1, 2, ..., K) (A3) 

is a sufficient condition for the zero-moment 
condition (A2). Setting the differentiation of the 
odd numbered terms of Ah(~) with respect to ~e 
equal to zero makes 

----0 (p----l. 2.. . .)  

Eq. (A4) is rewritten as 

{ - 4 ~ - 2 d l + d ~ - 0  at ~ - - - l  
4~+2dl+d2----0 at ~e=l (AS) 

and we have 

d x = - 2 g ,  d~---0 (A6) 

The differentiation of the even numbered terms 
with respect to ~e makes 

d/hPd~ ,.± = ( ~ - 1 + 2 d s ~ + d 4 )  ,.± =O (A7) 

Eq. (AT) is also rewritten as 

{ (2p+l)2--1--2ds+d4=0 at ~------1 
(2p+l)Z-1+2da+d4--0  at ~ = !  (A8) 

from which the constants ds and d4 are found to 
be 

d3=O, d 4 = - 4 p ( p +  l) (A9) 

2. The clamped-simply supported boundary 
condition (C-SS) for the two opposing edges that 
are parallel to the y-axis is 

{ ~x----0, ~'y----0, w----0 at ~-------I 
Mx=O, l~y=0, w = 0  at ~e=! (AI0) 

l~y=0 and w = 0  at ~e=_+l are satisfied by the 
condition given in Eq. (10), and the sufficient 
condition for the clamped-simply supported 
boundary condition is 

[ A ~ = 0 a t  ~ = - 1  
d A .  ^ (All) - - ~ = u  at ~-----I 

Using the relationships of Eqs. (11) and (A4), 
the condition for the odd numbered terms is given 
by 

{ A~-tJtf-t = (r~- T0+ d,~ + d25)It=-~--da-dz=0 

from which we have 

d~=d2= - 4~ (AI3) 
3 

For the even numbered terms 

{ A~I.-,= (T2,.,- T~ +ds~+d~)[._,=d~-d,=O 

~-~ ~ = ( ~ -  I +2d~=d~) ,. = (2p+I)'- 1+2'+d4=0 (AI4) 

from which we have 

ds----d4=- 4p(p+ 1) (AI5) 
3 




